Момент инерции при параллельном переносе осей. Изменение моментов инерции при параллельном переносе осей Момент инерции при параллельном переносе осей

Пусть z с , у с – центральные оси сечений, – моменты инерции сечения относительно этих осей. Определим моменты инерции сечения относительно новых осей z 1 , у 1 , параллельных центральным осям и смещенных относительно них на расстояния a и d . Пусть dA – элементарная площадка в окрестности точки М с координатами y и z в центральной системе координат. Из рис. 4.3 видно, что координаты точки С в новой системе координат будут равны, .

Определим момент инерции сечения относительно оси у 1 :

Рис.4.3
z c
y c
z 1
y 1
d
a
C
Очевидно, что первый интеграл дает, второй – , так как исходная система координат – центральная, а третий – площадь сечения А .

Таким образом,

Аналогично

Изменение моментов инерции сечения при повороте осей

Найдем зависимость между моментами инерции относительно осей y , z и моментами инерции относительно осей y 1 , z 1 , повернутых на угол a . Пусть J y > J z и положительный угол a отсчитывается от оси y против часовой стрелки. Пусть координаты точки М до поворота – y , z , после поворота – y 1 , z 1 (рис. 4.4).

Из рисунка следует:

Теперь определим моменты инерции относительно осей y 1 и z 1 :

Рис. 4.4
M
z
z 1
y 1
y
a
y
y 1
z 1
z
. (4.13)

Аналогично:

Сложив почленно уравнения (4.13) и (4.14), получим:

т.е. сумма моментов инерции относительно любых взаимно перпендикулярных осей остается постоянной и не изменяется при повороте системы координат.

Главные оси инерции и главные моменты инерции

С изменением угла поворота осей a каждая из величин и меняется, а сумма их остается неизменной. Следовательно, существует такое значение

a = a 0 , при котором моменты инерции достигают экстремальных значений, т.е. один из них достигает своего максимального значения, а другой – минимального. Для нахождения значения a 0 возьмем первую производную от (или) и приравняем ее нулю:

Покажем, что относительно полученных осей центробежный момент инерции равен нулю. Для этого приравняем правую часть уравнения (4.15) нулю: , откуда, т.е. получили ту же формулу для a 0 .

Оси, относительно которых центробежный момент инерции равен нулю, а осевые моменты инерции принимают экстремальные значения, называются главными осями. Если эти оси являются также и центральными, то они называются главными центральными осями. Осевые моменты инерции относительно главных осей называются главными моментами инерции.

Обозначим главные оси через y 0 и z 0 . Тогда

Если сечение имеет ось симметрии, то эта ось всегда является одной из главных центральных осей инерции сечения.

Определим зависимость между различными моментами инер­ции се­чения от­но­сительно двух параллельных осей (рис. 6.7), связанных зави­си­мос­тями

1. Для статических моментов инерции

Окончательно,

2. Для осевых моментов инерции

следовательно,

Если ось z проходит через центр тяжести сечения, то

Из всех моментов инерции относительно параллельных осей осе­­­вой момент инерции имеет наименьшее значение относительно оси, проходя­щей через центр тяжести сечения.

Аналогично для оси

Когда осьy проходит через центр тяжести сечения

3. Для центробежных моментов инерции получим

Окончательно можно записать

В случае, когда начало системы координат yz находится в цент­ре тя­же­сти сечения, получим

В случае, когда одна или обе оси являются осями симметрии,

6.7. Изменение моментов инерции при повороте осей

Пусть заданы моменты инерции сечения относительно координат­ных осей zy .

Требуется определить моменты инерции того же сечения от­но­си­те­ль­но осей, повернутых на некоторый уголпо отношению к систе­ме ко­­­ординатzy (рис. 6.8).

Уголсчитается положительным, если старую систему ко­ор­ди­нат для перехода к новой нужно повернуть против часовой стрелки (для пра­вой декартовой прямоугольной системы координат). Новаяи стараяzy системы координат связаны зависимостями, которые сле­дуют из рис. 6.8:

1. Определим выражения для осевых моментов инерции относи­те­ль­­но осей новой системы координат:

Аналогично относительно оси

Если сложить величины моментов инерции относительно осей и, то получим

т. е. при повороте осей сумма осевых моментов инерции является ве­ли­чи­­ной постоянной.

2. Выведем формулы для центробежных моментов инерции.

.

6.8. Главные моменты инерции. Главные оси инерции

Экстремальные значения осевых моментов инерции сечения на­зы­ваются главными моментами инерции.

Две взаимно перпендикулярные оси, относительно которых осе­вые мо­менты инерции имеют экстремальные значения, называются глав­­ны­­­ми осями инерции.

Для нахождения главных моментов инерции и положения глав­ных осей инерции определим первую производную по углу от мо­мен­та инер­­­ции, определенного по формуле (6.27)

Приравняем этот результат нулю:

где - угол, на который нужно повернуть координатные осиy иz , что­­­бы они совпали с главными осями.

Сравнивая выражения (6.30) и (6.31), можно установить, что

,

Следовательно, относительно главных осей инерции центро­бе­ж­­­ный мо­­мент инерции равен нулю.

Взаимно перпендикулярные оси, из которых одна или обе сов­па­да­ют с осями симметрии сечения, всегда являются главными осями инер­ции.

Решим уравнение (6.31) относительно угла :

.

Если >0, то для определения положения одной из главных осей инер­ции для правой (левой) декартовой прямоугольной сис­темы ко­ор­ди­­нат необходимо осьz повернуть на уголпротив хода вра­ще­ния (по хо­­ду вращения) часовой стрелки. Если<0, то для оп­ре­деления по­ло­же­ния одной из главных осей инерции для пра­вой (левой) де­кар­то­вой пря­мо­у­го­ль­ной системы координат необ­хо­димо осьz повернуть на уголпо ходу вращения (против хода вра­ще­ния) часовой стрелки.

Ось максимум всегда составляет меньший угол с той из осей (y илиz ), относительно которой осевой момент инерции имеет большее зна­че­ние (рис. 6.9).

Ось максимум направлена под углом к оси(), если() и расположена в четных (нечетных) четвертях осей, если().

Определим главные моменты инерции и. Используя фор­му­­­лы из тригонометрии, связывающие функции,,,с функциями,,из формулы (6.27) по­лу­чим

,

Изменение моментов инерции стержня при параллельном переносе осей.

В дополнении к статическим моментам рассмотрим ещё три следующих интеграла:

Где по прежнему через х и у обозначены текущие координаты элементарной площадки dF в произвольно взятой системе координат xOy. Первые 2 интеграла называются осевыми моментами инерции сечения относительно осей х и у соответственно. Третий интеграл называется центробежным моментом инерции сечения относительно х, у. Осевые моменты всегда положительны, т.к. положительной считается площадь dF. Центробежный момент инерции может быть как положительным, так и отрицательным, в зависимости от расположения сечения относительно осей x, у.

Выведем формулы преобразования моментов инерции при параллельном переносе осей. (см рис). Будем считать, что нам заданы моменты инерции и статические моменты относительно осей х 1 и у 1 . Требуется определить моменты относительно осей х2 и у2.

Подставляя сюда x 2 =x 1 -a и y 2 =y 1 -b Находим

Раскрывая скобки, имеем.

Если оси х 1 и у 1 – центральные, то S x 1 = S y 1 =0 и полученные выражения упрощаются:

При параллельном переносе осей (если одна из осей – центральная) осевые моменты инерции изменяются на величину, равную произведению площади сечения на квадрат расстояния между осями.

Рассмотрим определение моментов инерции плоской фигуры (рис) относительно осей ${Z_1}$ и ${Y_1}$ при известных моментах инерции относительно оси $X$ и $Y$.

${I_{{x_1}}} = \int\limits_A {y_1^2dA} = \int\limits_A {{{\left({y + a} \right)}^2}dA} = \int\limits_A {\left({{y^2} + 2ay + {a^2}} \right)dA} = \int\limits_A {{y^2}dA} + 2a\int\limits_A {ydA} + {a^2}\int\limits_A {dA} = $

$ = {I_x} + 2a{S_x} + {a^2}A$,

где ${S_x}$ - статический момент фигуры относительно оси $X$.

Аналогично относительно оси ${Y_1}$

${I_{{y_1}}} = {I_y} + 2a{S_y} + {b^2}A$.

Центробежный момент инерции относительно осей ${X_1}$ и ${Y_1}$

${I_{{x_1}{y_1}}} = \int\limits_A {{x_1}{y_1}dA} = \int\limits_A {\left({x + b} \right)\left({y + a} \right)dA} = \int\limits_A {\left({xy + xa + by + ba} \right)dA} = \int\limits_A {xydA} + a\int\limits_A {xdA} + b\int\limits_A {ydA} + ab\int\limits_A {dA} = {I_{xy}} + a{S_x} + b{S_y} + abA$

Чаще всего используется переход от центральных осей (собственных осей плоской фигуры) в произвольных, параллельных. Тогда ${S_x} = 0$, ${S_y} = 0$, так как оси $X$ и $Y$ являются центральными. Окончательно имеем

где , - собственные моменты инерции, т. е. моменты инерции относительно собственных центральных осей;

$a$, $b$ - расстояния от центральных осей до рассматриваемых;

$A$ - площадь фигуры.

Следует отметить, что при определении центробежного момента инерции в величинах $a$ и $b$ должен быть учтен знак, то есть они являются по сути, координатами центра тяжести фигуры в рассматриваемых осях. При определении осевых моментов инерции эти величины подставляют по модулю (как расстояния), поскольку они все равно возвышаются до квадрата.

С помощью формул параллельного переноса возможно осуществлять переход от центральных осей к произвольным, или же наоборот - от произвольных центральных осей. Первый переход осуществляется со знаком "+". Второй переход осуществляется со знаком " - ".

Примеры использования формул перехода между параллельными осями

Прямоугольное сечение

Определим центральные моменты инерции прямоугольника при известных моментах инерции относительно осей $Z$ и $Y$.

${I_x} = \frac{{b{h^3}}}{3}$; ${I_y} = \frac{{h{b^3}}}{3}$.

.

Аналогично ${I_y} = \frac{{h{b^3}}}{{12}}$.

Треугольное сечение

Определим центральные моменты инерции треугольника при известном моменте инерции относительно основы ${I_x} = \frac{{b{h^3}}}{{12}}$.

.

Относительно центральной оси ${Y_c}$ треугольник имеет другую конфигурацию, поэтому рассмотрим следующее. Момент инерции всей фигуры относительно оси ${Y_c}$ равен сумме момента инерции треугольника $ABD$ относительно оси ${Y_c}$ и момента инерции треугольника $CBD$ относительно оси ${Y_c}$, то есть

.

Определение момента инерции составного сечения

Составленным считаем сечение, состоит из отдельных элементов, геометрические характеристики которых известны. Площадь, статический момент и моменты инерции составной фигуры равны сумме соответствующих характеристик их составляющих. Если составлен сечение можно образовать путем вырезания одной фигуры из другой, геометрические характеристики вырезанной фигуры вычитаются. Например, моменты инерции составной фигуры, показанной на рис. будут определяться так

$I_z^{} = \frac{{120 \cdot {{22}^3}}}{{12}} - 2 \cdot \frac{{50 \cdot {{16}^3}}}{{12}} = 72\,300$см 4 .

$I_y^{} = \frac{{22 \cdot {{120}^3}}}{{12}} - 2 \cdot \left({\frac{{16 \cdot {{50}^3}}}{{12}} + 50 \cdot 16 \cdot {{29}^2}} \right) = 1\,490\,000$см 4

Часто при решении практических задач необходимо определять моменты инерции сечения относительно осей, различным образом ориентированных в его плоскости. При этом удобно использовать уже известные значения моментов инерции всего сечения (или отдельных составляющих его частей) относительно других осей, приводимые в технической литературе, специальных справочниках и таблицах, а также подсчитываемые по имеющимся формулам. Поэтому очень важно установить зависимости между моментами инерции одного и того же сечения относительно разных осей.

В самом общем случае переход от любой старой к любой новой системе координат может рассматриваться как два последовательных преобразования старой системы координат:

1) путем параллельного переноса осей координат в новое положение и

2) путем поворота их относительно нового начала координат. Рассмотрим первое из этих преобразований, т. е. параллельный перенос координатных осей.

Предположим, что моменты инерции данного сечения относительно старых осей (рис. 18.5) известны.

Возьмем новую систему координат оси которой параллельны прежним. Обозначим а и b координаты точки (т. е. нового начала координат) в старой системе координат

Рассмотрим элементарную площадку Координаты ее в старой системе координат равны у и . В новой системе они равны

Подставим эти значения координат в выражение осевого момента инерции относительно оси

В полученном выражении -момент инерции статический момент сечения относительно оси равен площади F сечения.

Следовательно,

Если ось z проходит через центр тяжести сечения, то статический момент и

Из формулы (25.5) видно, что момент инерции относительно любой оси, не проходящей через центр тяжести, больше момента инерции относительно оси, проходящей через центр тяжести, на величину которая всегда положительна. Следовательно, из всех моментов инерции относительно параллельных осей осевой момент инерции имеет наименьшее значение относительно оси, проходящей через центр тяжести сечения.

Момент инерции относительно оси [по аналогии с формулой (24.5)]

В частном случае, когда ось у проходит через центр тяжести сечения

Формулы (25.5) и (27.5) широко используются при вычислении осевых моментов инерции сложных (составных) сечений.

Подставим теперь значения в выражение центробежного момента инерции относительно осей